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We have recently determined dislocation core structures in complex minerals relevant to the Earth’s mantle
using the Peierls-Nabarro model. In this approach, the original Peierls-Nabarro model is coupled with first-
principles calculations of generalized stacking fault. In order to test the reliability of such calculations, we
study here the dislocation core properties in a perovskite-structured material, SrTiO3, for which a lot of
experimental information are available. Four different slip systems have been investigated in SrTiO3:

�100��010�, �100��011�, �110��001�, and �110��11̄0�. �110��11̄0� exhibits the lower lattice friction due to core
spreading, and the next easiest slip system is found to be �100��010�. It is shown that our results �dislocation
core spreading and Peierls stress values� are in perfect agreement with experiments �transmission electron
microscopy model of core structure and mechanical properties�, providing an interesting validation of the
Peierls-Nabarro model on complex materials.
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I. INTRODUCTION

A large number of materials that have paramount applica-
tions in both mineralogy and materials science exhibit a per-
ovskite structure. In mineralogy, the lower mantle is thought
to be mostly constituted by �Mg,Fe�SiO3 perovskite and to a
less extent by CaSiO3 perovskite.1 The dynamics of the Earth
is thus largely controlled by the deformation mechanisms in
perovskites. In materials science, perovskites have manifold
applications for their ferroelectric, dielectric, or piezoelectric
properties, for energy storage, catalysis, etc. Dislocations are
important in many of these applications as an agent of defor-
mation or in relation to their electronic properties.

Strontium titanate �SrTiO3� exhibits a cubic symmetry
�space group Pm3m; a=3.905 Å� and is commonly regarded
as the archetypal cubic perovskite. SrTiO3 has a very large
dielectric constant. It is also widely used as a substrate
for the epitaxial growth of high-temperature superconducting
�and many oxides� thin films, for special optical windows,
and as high quality sputtering target. For these reasons,
several studies have addressed recently the issue of plastic
deformation and dislocation properties in SrTiO3. As
generally observed in perovskites,2 the most common slip

systems observed in deformed SrTiO3 are �110��11̄0� and
�100��010�.3–6 It is, however, possible, following elaboration,

to find other dislocation types such as �11̄0��001�7 or

�001��11̄0�.8 The plasticity of SrTiO3 exhibits a very surpris-
ing evolution with temperature with a very strong flow stress
anomaly eventually leading to an inverse brittle-ductile
transition.5,6 Such behavior suggests that dislocations may
exhibit several core structures. There have been several ob-
servations suggesting that some dislocations are dissociated
in SrTiO3, either in the glide or in the climb mode.7,4,9,10 The
core structure of dislocations in SrTiO3 has been recently the
subject of very detailed studies using high-resolution trans-
mission electron microscopy �HRTEM�8 or electron-energy-
loss spectroscopy �EELS�9,10 leading to atomic-scale models
of dislocation cores. The goal of the present study is to pro-
vide numerical models of dislocations in SrTiO3 to be com-
pared with available observations.

As recently summarized by Schoeck,11 information about
the atomic arrangement around a dislocation core can be ob-
tained in two ways, either by direct atomistic simulation or
by the Peierls-Nabarro �PN� model. It is commonly recog-
nized that the drawback of atomistic simulations is that they
rely on interatomic potentials often imprecisely defined. On
the contrary, the possibility to obtain accurate interplanar
atomic interaction potentials through the generalized stack-
ing fault �GSF� concept by ab initio calculation has led to a
revival of the determination of dislocation core in a complex
structure with the help of the PN model. In this study, we
propose to model dislocation cores in SrTiO3 with the PN
model.

II. PEIERLS-NABARRO MODEL

The original PN model12,13 represents a useful and effi-
cient approach to calculate the core properties of
dislocations14–16 based on the assumption of a planar core.17

It has been shown to apply to a wide range of
materials.16,18–25 The purpose of this section is to briefly re-
view the relevant aspects of the PN model for application to
dislocations in SrTiO3.

The PN model assumes that the misfit region of inelastic
displacement is restricted to the glide plane, whereas linear
elasticity applies far from it. A dislocation is treated as a
continuous distribution of shear S�x� or of infinitesimal dis-
locations with density ��x� �for which the total summation is
equal to the Burgers vector b� along the glide plane �x is the
coordinate along the displacement direction of the disloca-
tion in the glide plane�. The restoring force F acting between
atoms on either sides of the interface is balanced by the
resultant stress of the distribution leading to the well-known
PN equation,

K
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where K, the energy coefficient, is a function of the disloca-
tion character �. The main effect of elastic anisotropy on the
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dislocation line energy is found in the energy coefficient K,
which can be calculated within the frame of the Stroh
theory.26 As largely developed in numerous studies since
Vitek,27,28 the solution of the PN equation can be numerically
found by introducing a restoring force simply defined as the
gradient of the so-called generalized stacking fault �,

F� �S� = − grad� ��S� . �2�

In the following, we determine from first principles the GSF
for potential slip systems of the SrTiO3 perovskite, and then
we use the GSF results as an input into the PN model. Fol-
lowing the methodology proposed by Joos et al.,29 the dis-
registry function S is determined by solving the PN equation
with a solution in the following form:

S�x� =
b

2
+

b

�


i=1

N

�i arctan
x − xi

ci
, �3�

where �i, xi, and ci are variational constants. Using the pre-
vious disregistry function �Eq. �3�	 in the left-hand side of
the PN equation gives a trial restoring force �containing the
�i, xi, and ci parameters�. The variational constants �i, xi, and
ci are fitted from a least squares minimization of the differ-
ence between the trial force and the restoring force F derived
from our ab initio calculations �see Carrez et al.23 for the
details of the calculations�.

In order to obtain the misfit energy corresponding to the
Peierls dislocation and to determine the Peierls stress, the
sum of the local misfit energy has to be done at the position
of atom rows parallel to the dislocation line.26,30 The misfit
energy can thus be written as29,15

W�u� = 

m=−�

+�

��S�ma� − u�	a�, �4�

where a� is the periodicity of W, taken as the shortest unit
cell parameter in the direction of the dislocation’s displace-
ment. The Peierls stress is then given by

�P = max�1

b

dW�u�
du

� . �5�

III. COMPUTATIONAL DETAILS

First-principles calculations have been performed based
on the density functional theory within the generalized gra-
dient approximation �GGA�.31 Calculations were performed
using the VASP code32–35 and the all-electron projector-
augmented-wave method.36,37 The outmost core radius for
the Sr, Ti, and O atoms are 2.5, 2.3, and 1.52 a.u. respec-
tively. Namely, with the pseudopotentials used in this study,
4s, 4p states for Sr and 3s, 3p states for Ti are treated as
valence states. In the simulation, the electronic density is
expanded on a plane wave basis set with a single cutoff
energy of 500 eV to obtain a convergence of 0.05 eV on the
total energy.

Bulk properties of SrTiO3 were determined by simula-
tions using a supercell based on a 2a	2a	2a unit cell.

Throughout this study, the first Brillouin zone was sampled
using a Monkhorst-Pack grid38 adapted for each supercell
geometry.

The crystallographic structure of SrTiO3 was optimized
�full relaxation of cell parameters and of atomic positions�
using an 8	8	8 k-point mesh, and the athermal elastic
constant were determined as the second order derivative of
the energy of a strained equilibrium cell. Results of cell pa-
rameter and elastic constant presented in Table I are in fairly
good agreement with available data from recent theoretical
work or experimental values �e.g., Piskunov et al.39 or Cap-
pellini et al.40 and references herein�. As commonly noticed,
the discrepancy between values comes mostly from the
choice of first-principles approximations.

Calculating a GSF for a given slip system requires a su-
percell with a geometry adapted to the shear plane and di-
rection. Among several possibilities,41 we have chosen to
build supercells on a Cartesian reference frame defined by
the normal of the stacking fault plane and by the shear di-
rection. A vacuum buffer is added in the direction normal to
the slip plane to avoid interaction between repeated stacking
faults resulting from the use of periodic boundary conditions.
Thus, for all the GSF calculations, three distinct supercells
were used �Fig. 1�. The number of atoms was limited to 30
atoms per supercell. The GSF excess energies � are finally
calculated by imposing a given shear displacement value to
the upper part of the supercell. All atoms but those located
close to the buffer layer are allowed to relax in the directions
perpendicular to the shear direction in order to minimize the
energy of the GSF. Further details of the supercell construc-
tion and relaxation conditions can be found elsewhere.42

IV. RESULTS

A. Generalized stacking faults

The result of the four GSF calculations are presented in
Fig. 2. The Burgers vector lengths are taken as 3.939 and
5.571 Å for �100� and �110�, respectively. All the GSFs
exhibit a single peak shape that can be significantly different
from a cosine profile, particularly for the case of

�110��11̄0�, which is characterized by a plateau around �max.
This slip system is also characterized by the lowest energy

TABLE I. Lattice parameter and elastic constants calculated
ab initio for SrTiO3 in the present study using the GGA approxi-
mation. A comparison is provided with previous calculations from
Piskunov et al. �Ref. 39� performed with an optimized basis set.
Bulk modulus B, shear modulus 
, and the Poisson ratio � are
calculated using the standard relations B= �C11+2C12� /3, 
=C44,
and �=C12 / �C11+C12�.

a
�Å�

C11

�GPa�
C12

�GPa�
C44

�GPa�
B

�GPa�
� 
 / �1−��

�GPa�

This work 3.939 319.9 99.4 109.3 173 0.237 143.3

Piskunov
et al.
�PWGGA�

3.95 312.9 98.0 113.4 170 0.238 154.9
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value �Table II�, and strong differences are found between

the shear resistances along �110� on the �11̄0� or on the �100�
planes. These differences are also revealed by the value of
the ideal shear stress �or �max� defined as the maximum value
of the restoring force F �i.e., the maximum slope of the
GSF�. One can see in Table II that three slip systems
��100��010�, �100��011�, and �110��001�� exhibit comparable

�max, whereas �110��11̄0� appears to have the lowest ideal
shear stress.

B. Dislocation cores and Peierls stresses

Once the restoring force F is determined through the
ab initio calculation of the GSF, one can calculate the size of
the dislocation core by solving the PN equation. The order N
of the disregistry function S �Eq. �3�	 was adjusted to N=6

for the four slip systems. Using symmetrical consideration,
the dislocation density can be viewed as the sum of two
terms �as represented in Fig. 3� that contribute to the total
density. The value of K used in the PN equation was deter-
mined considering SrTiO3 as an anisotropic crystal and are
presented in Tables III and IV. These values can be com-
pared to isotropic shear modulus and Poisson ratio presented
in Table I, showing that SrTiO3 is very close to an isotropic
material.

The dislocation densities � determined in this study are
presented in Fig. 3 for screw characters �edge characters are
very similar, although systematically wider�. All the cores
are relatively wide with an extension over at least one peri-

odicity. �110��11̄0� dislocations show a tendency toward dis-
sociation although the partial dislocations are strongly over-
lapping.

The solution of the PN model is used to build atomistic
models of the dislocation cores. We start from a perfect crys-
tal. Following the Peierls approach, the crystal is bisected
into two parts above and below the glide plane. The atomic
rows of the upper part are shifted according to the shear
profile S�x� calculated in the PN model. The final shape of
the lattice planes is obtained by adding the isotropic elastic
displacement field associated with the dislocation �of density
��. Figure 4 presents atomistic models for the four types of
dislocations considered in the present study.

Finally, the misfit energy W�u� and the Peierls stresses
were determined using Eqs. �4� and �5�. An example of W�u�
is presented in Fig. 5 for a �100��010� edge dislocation. The
four slip systems exhibit significantly different Peierls

stresses �see Tables III and IV�. �110��11̄0� appears to be the
easiest slip system with Peierls stresses of the order of a few
megapascals. On the opposite side, �100��011� is the hardest
slip system with plastic deformation controlled by Peierls
friction on the screw segments �of 10 GPa�. In between,
we find �100��010� and �110��001� with Peierls stresses
around 1 GPa.

V. DISCUSSION

The study of the GSF provides the first information about
the ability of the SrTiO3 perovskite to undergo plastic shear.

One can see readily in Fig. 2 that shear along �110��11̄0� is
significantly easier than along the three other slip planes con-

TABLE II. Parameters obtained from the GSF calculations. �max

is the maximum value of the excess energy barrier. �max is the ideal
shear stress. In the last column, �max is normalized by the shear
modulus 
.

Slip system
�max

�J /m2�
�max

�GPa�
�max /


�100��010� 2.14 18.1 0.16

�100��011� 2.40 20.2 0.18

�110��001� 3.05 19.0 0.17

�110��110� 1.02 6.7 0.06

FIG. 1. Supercells used in this study to calculate the GSFs. For
all the supercells, light gray spheres correspond to Sr atoms; oxygen
octahedra are displayed in gray with a small black sphere in the
center corresponding to the Ti atom. The shear plane located in the
middle of the supercell is represented in gray. �a� Supercell used for

�100	�001�, �b� supercell used for �001	�11̄0� and �110	�11̄0�, and
�c� supercell used for �110	�001�. For all the supercells, atoms
present on outer surface layers are kept fixed during the GSF cal-
culation to mimic the action of a surrounding bulk material.

FIG. 2. Generalized stacking faults �GSFs� calculated in this
study. The GSF are plotted against the shear displacement vector
S�x�.
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sidered. The PN model provides, however, a more elaborate
level of understanding as it gives information about the dis-
location core fine structure. In particular, the PN model gives
information about the tendency of the core to spread along
the glide plane. Core spreading has a profound influence on
the lattice friction borne by the dislocation and hence on its
mobility. Figure 3 emphasizes the picture drawn from the
GSF. One can see that �100��010�, �100��011�, and
�110��001� dislocations exhibit no splitting, although their
distributions can be mathematically decomposed into two

strongly overlapping partial dislocations. The situation is dif-
ferent for �110��11̄0� dislocations. The plateau observed on
the GSF results in a significant core spreading. Partial dislo-
cations are not individualized, however. The implications of
these core structures can be appraised from Tables III and IV,

which show that �110��11̄0� dislocations bear much lower
Peierls frictions than the other dislocations.

Given the strong sensitivity of Peierls friction to disloca-
tion core spreading, one can question the reliability of the
Peierls model to reproduce dislocation core profiles in com-

(a)

(b) (d)

(c)

FIG. 3. Dislocation density ��� for screw dislocations in the SrTiO3 perovskite calculated for the following slip systems: �a� �100��010�,
�b� �100��011�, �c� �110��001�, and �d� �110��11̄0�.

TABLE III. Results of the Peierls-Nabarro model for screw dis-
locations. a� is the periodicity of the Peierls valley.  is the half-
width of the dislocation core deduced from the numerical solution
of the PN equation. � is the partial dislocation separation distance.
 and � are given in Å and also as a function of a� in brackets. �W
corresponds to the Peierls energy barrier, and �p is the calculated
Peierls stress needed to overcome the energy barrier.

Slip system
K�0�
�GPa�

a�
�Å�


�Å�

�
�Å�

�W
�10−11 J /m�

�p

�GPa�

�100��010� 110.00 3.939 2.830
�0.72�

3.20 0.7

�100��011� 110.00 5.571 2.308
�0.41�

65.70 9.9

�110��001� 109.25 5.571 4.320
�0.77�

7.76 0.9

�110��110� 109.25 3.939 11.767
�2.99�

9.898
�2.51�

0.04 0.006

TABLE IV. Results of the Peierls-Nabarro model for edge dis-
locations. a� is the periodicity of the Peierls valley.  is the half-
width of the dislocation core deduced from the numerical solution
of the PN equation. � is the partial dislocation separation distance.
 and � are given in Å and also as a function of a� in brackets. �W
corresponds to the Peierls energy barrier, and �p is the calculated
Peierls stress needed to overcome the energy barrier.

Slip system
K�90�
�GPa�

a�
�Å�


�Å�

�
�Å�

�W
�10−11 J /m�

�p

�GPa�

�100��010� 143.94 3.939 3.686
�0.93�

2.90 0.6

�100��011� 143.99 3.939 3.019
�0.77�

2.88 0.6

�110��001� 144.49 5.571 5.697
�1.02�

11.50 1.2

�110��110� 144.07 5.571 15.497
�2.78�

13.188
�2.37�

0.04 0.004
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plex materials. SrTiO3 represents an excellent test material
as recent studies have provided HRTEM micrographs of dis-
location cores of very high quality. Indeed, Jia et al.8 showed
that a combination of hardware correction of the spherical
aberration with numerical phase-retrieval techniques could
capture detailed atomic arrangements of cations and anions
in the dislocation core of a �100��011� dislocation in SrTiO3.
Their study �reproduced in Fig. 6�a� with permission	 pro-
vides a direct counterpart to our numerical models. Figure
6�c� demonstrates that the size of the dislocation is perfectly
reproduced by the Peierls model. A further comparison can
be made with the study of Zhang et al.,9 who inferred pos-

sible models for �100��010� dislocations �in a symmetrical
tilt boundary� from HRTEM and EELS. In Fig. 6 of their
paper, Zhang et al.10 proposed four possible dislocation core
models �labeled A, B, C, and D� for �100��010� dislocations,
which correspond to different cut levels for the glide plane
and different core terminations �SrO or TiO�. They show that
only core models labeled B and C can match the EELS data.
Our study shows that these B and C core models correspond
to the same core structure represented at different positions
in the glide plane along the glide direction. Indeed, consid-
ering the Peierls potential associated with the motion of
�100��010� edge dislocations �Fig. 5�, two distinct core struc-
tures can be considered: one, stable, characterized by the
lowest misfit energy �i.e., in the Peierls valley� and another
one, unstable, corresponding to the highest misfit energy
�i.e., on top of the Peierls hill�. We find that case B corre-
sponds to the valley position, whereas case C corresponds
to the top-hill position. Therefore, we suggest that the
dislocation studied by Zhang et al. must correspond to their
B model �which corresponds to the model depicted in
Fig. 4�a�	.

What do we learn about the plasticity of the SrTiO3 per-
ovskite from dislocation core modeling? There seems to be a

general trend that perovskites slip on �110��11̄0� at low tem-
perature with an increasing activity of �100��010� �involving
climb?� at higher temperature.2 SrTiO3 perovskite follows
this trend.3,4,43 The temperature dependence of plastic defor-
mation of the SrTiO3 perovskite has been investigated over a
large range �from liquid nitrogen to 1800 K� on single crys-

tals oriented to activate �110��11̄0� slip.5,6 Discussing these

(a)

(b) (d)

(c)

FIG. 4. Atomistic models for edge dislocations in the SrTiO3 perovskite calculated for the following slip systems: �a� �100��010�, �b�
�100��011�, �c� �110��001�, and �d� �110��11̄0�. For the four structures, light gray spheres correspond to Sr, small black spheres to Ti, and
large black spheres to O.
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FIG. 5. Misfit energy W for a �100��010� edge dislocation, plot-
ted as a function of the position u of the dislocation core. As noted
by Joos et al. �Ref. 29�, the average misfit energy for all positions of
the dislocation corresponds to the classical energy of a dislocation
Kb2 /4�.
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results, Zhang et al.10 observed that “the temperature depen-

dence of the critical resolved shear stress of �110��11̄0� dis-
locations is weak �comparable to that of many fcc metals�,
even down to liquid-nitrogen temperature.” This is in excel-
lent agreement with the Peierls stresses found in this study
�see Tables III and IV�. The �slightly dissociated� core struc-

ture depicted in Fig. 4�d� is likely to describe �110��11̄0�
dislocations in the low-temperature regime. At temperatures

above 900 K, the critical flow stress for �110��11̄0� slip
increases �for either �110� or �100� oriented samples�. This

has led Gumbsch et al.6 to propose that �110��11̄0� disloca-
tions could exhibit a “high-temperature” core structure, more
difficult to move than the one depicted in Fig. 4�d�. There

exist many possibilities to account for such behavior. One,
analogous to the case of bcc metals, could be that screw
dislocations adopt a three dimensional structure. Our calcu-
lations based on the PN model cannot calculate such struc-
tures, but we note that �contrary to some cases identified in
previous studies24,25� we do not find that �110� dislocations
tend to spread in several planes simultaneously. Although not
representing a final argument, this does not support the hy-
pothesis of a three dimensional core. Another possibility is
that dislocations exhibit dissociation in the climb mode. This
possibility has been put forward earlier by Mao and
Knowles7 based on TEM observations and has recently been
confirmed by Zhang et al.10 using HRTEM and EELS. The
dislocations are dissociated following the collinear reaction
�110�=1 /2�110�+1 /2�110�, with the partial dislocations be-
ing separated by a stacking fault on a nonslip plane. Zhang et
al.10 showed that this climb dissociation could be further
stabilized if the core is oxygen deficient. Climb dissociation
at high temperature must result in a severe decrease of the
mobility of �110� dislocations. This can explain the flow
stress anomaly reported5,6 as well as the predominance of
�100� glide reported at high temperature.3,4,43 Concerning a
�100� glide, our calculations confirm that easiest slip takes
place on �001�, in agreement with most observations.

VI. CONCLUSION

The PN model provides information on dislocation core
structures and plasticity in SrTiO3. Despite the fact that
�110� does not correspond to the smallest lattice repeat,

�110��11̄0� is the easiest slip system. This is due to a ten-
dency toward core spreading into the glide plane for this slip
system. Our calculations are consistent with the high-
mobility, low-temperature core structure assumed by Brun-
ner et al.5 and Gumbsch et al.6 These authors have shown,

however, that �110��11̄0� dislocations exhibit at high-
temperature, low-mobility core structure �involving climb
dissociation�, which cannot be predicted within the frame of
the PN model. The second slip system is �100��010� as usu-
ally reported ��100��110� is, in fact, the slip system observed
at high-temperature�.

Our results compare well with the experimental results of
Zhang et al.10 �for which our calculation provides further
constraint on the core structure as deduced from EELS mea-
surements� and of Jia et al.8 In the latter case, a direct com-
parison with experimental HRTEM micrographs validates
the PN model for complex materials in determining the size
of a dislocation core. This validation is important as the PN
model is presently one of the rare approaches available to
infer dislocation properties in one of the most important
phase of the Earth’s mantle: MgSiO3 perovskite.
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Calculated structure superimposed on the experimental image for
comparison.
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